NOTATION

Oxyz is the orthogonal coordinate system;

®ij is the generalized mean coefficient for the irradiation of the i-th zone by the j-th zone;
i is the zone area;

ai, Bi,vi are the direction angles of nj, the normal to Fy;

abs(p;) is the length of radius vector p; for zone i;

¢f is the contour of the i-th zone;

ryj is the distance between points in the i-th and j-th zones;

AXjjs Byjs Azij  are the projections of rjj on the x, y, and z axes.
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THERMAL CONDUCTIVITY OF A REINFORCED PLATE

E. Kh. Lokharu and E. A, Tropp UDC 536,21,01:624,07:517.9

Multiscale expansion is used in asymptotic integration of a steady-state heat-conduction problem
for a thin plate of periodic structure; results are presented for the boundary layer near the end.

The singular-perturbation method has proved an efficient means of derving approximate equations for
thin bodies; for instance, the method has been applied to the complete equations in the theory of elasticity to
derive equations for the bending of a plate [1, 2] or rod [3]. A similar method has been used [4] in the theory
of heat conduction for a thermally insulated lateral surface. A method has been given [5, 6] for extending the
technique to conditions of the third kind for small values of the Biot number, An approximation has also been
constructed {7] for the asymptote to a second boundary-value problem for a second-order elliptic equation
of general form for a region in which one dimension is much less than the others.

These studies have envisaged either homogeneous bodies or else bodies in which the parameters vary
slowly in space; on the other hand, applications often involve inhomogeneous media in which the parameters
vary considerably over distances small by comparison with the length of the body. The simplest case is one
where the rapid change is regular, e.g., periodic. Bodies of regular structure are of importance in them-
selves in the description of reinforced structures 8] as well as in the simulation of irregular inhomogeneous
bodies, including random media. The asymptotic methods of [1-3, 5-7] are inadequate for media with rapidly
varying parameters. However, another form of the singular-perturbation method, which is widely used in
nonlinear mechanics [4], is then effective: two-scale expansion. Here we consider a steady-state problem in
the theory of heat conduction for a thin plate reinforced by a rod lattice. It is assumed that the thermal con-
ductivity of the reinforcement differs from that of the matrix material and also that the thermal contact is
ideal.

The latter assumption is unimportant for the method given here and is made only in order to simplify
the expressions,

Physical considerations show that such a reinforced plate can be replaced approximately by a homo-
geneous plate whose thermal conductivity along the rod direction is different from that along the transverse
direction if we are not inferested in the details of the temperature variation over distances small by compari-
son with the size of the plate in plan. Here we provide a justification for this substitution, i.e., we use the
three-dimengional conduction equation to derive a two-dimensional one and construct an algorithm for calculat-
ing the corrections to the two-dimensional temperature distribution. This method gives, in particular,

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 3, pp. 497-504, September, 1978, Origi-
nal article submitted July 25, 1977,
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Fig. 1. Cross section of a plate,

asymptotically exact effective thermal conductivities without resort to any hypotheses on the temperature dis-
tribution over the thickness of the plate or over the cross section of a rod.

The formulation is as follows. The parallelepiped —a <x<a, —b<y <b, ~h<z<h @ <1, /b < 1)
consists of identical blocks adjoining one another (Fig. 1), each of which contains a cylindrical inclusion; the
generators of the cylinders are parallel to the y axis, while the cross section is a singly coupled region S;
bounded by a piecewise-smooth curve I';. The characteristic size of a cylinder in cross section is d, while
the pitch of the rod lattice is t, which is of the same order as the thickness h of the plate.

We assume that in the plane X = —a we have a constant temperature distribution T(—a, y, z) = F§, 2),
while the heat transfer occurs in accordance with Newton's law on the other faces (the environmental tem-~
perature T, is taken as constant). There is ideal contact at the boundary of each inclusion, so the tempera-
ture and heat flux are continuous, We then seek to determine the asymptotic solution to Laplace's equation
92T/9x% + 8°T/0y% + 9°T/9%z2 = 0 when & = h/z — 0, where it is assumed that £/h and d/i tend to constant values t
and d on passing to the limit.

The two-scale expansion method leads us to replace the dimensional variable X by two dimensionless
ones: the large-scale variable x = x/a and the small-scale variable £ = x/h. The problem is then formulated
as follows in terms of the dimensionless variables x, £, y = y/@, z = z/h, and u = (T—T)/T,: the equation for
steady-state heat conduction,

0%u 0 *u Pu 0*u
2e 2 —
o2 + 022 ™ OEdx +e ( ox? + dy? ) 0 1)
(gy Z)GSiusz, lx|<1: lyl<6;
the boundary conditions at the outer surface of the plate,
Ou ou
= [ ’ = 11 _ _— = '—A 2 N =1,
u="{, 2, x 6§+30x g%, x=1
du ou
—=Fgdeu, y==406, —=F A, z=+1; 2)
dy 0z
and the conditions at the boundary of an inclusion,
[} =10, |2 dul_ e(h—2Ay) a—ucos ng, €, 2)€T,. (3)
on Ox

In (1)-(3) we have used the symbols 6 = b/zand A = oa’/\h, where o is the heat-transfer coefficient for the side
surface, A, is the thermal conductivity of the plate material, and A is the thermal conductivity of the inclu-
sions, The quantity gg takes the value 1 if the point lies in region S;. It has been assumed in writing (2) that
the Biot number is of the second order of smallness in €, It has been shown [5, 6] that this case corresponds
to approximately one-dimensional heat conduction for a rod or approximately two-dimensional conduction for
a plate.

We assume that as € — 0 we have a limiting expansion applicable at some distance from the side faces
x=z1, y = +6:

-
— Vgt
u= 2 ety
=0

We substitute this series into (1) and use (2) and (3) to obtain the following chain of equations:

azuk azuk -9 Ozuk_i . 02uk_z + azuh_z
k2 022 0xdE ox? ay ]

Ou,

€ €S US,, =FAu , z2==+1, 4)
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2] ()

au’k 1
0x

[u1=0, [7» cosnk, &, 2)€T,. 4)
The region defined by the variables £ and z becomes an infinite band whose structure is periodic along the £
direction on passing to the limit e — 0 with £ fixed; in the first approximation (k = 0), the thermal-insulation
condition applies at the bounding planes. The equations and the boundary conditions then have translational
symmetry along the £ direction, with repeat distance t. Consequently, the solution should show the same
periodicity. In the subsequent approximations, the right sides of the equations and the boundary condition con-
tain periodic functions of £ and functions of the slow variable x, The relationship between the variables x and
£ is not explicitly incorporated into the equations involving differentiation with respect to ¢ (i.e., the x depen-
dence is parametric), so the functions of x appearing on the right side do not cause a deviation from the trans-
lational symmetry in £&. This means that (4) can be replaced in all approximations by means of the periodicity
condition

duy E+1) _ 0u, (§) ®)
o8 o

We now solve (4) and (5); these imply for k = 0 that ug is independent of £ and z: u; = uy(x, y). All the
conditions that determine u; are homogeneous, apart from the condition for continuity of the heat flux at the
boundary of an inclusion:

u 8+ 1) = u, ),

[ %“—‘] = (A — D) Oy cosng, (& 2)€T,. (6)
n

ox

The right side of (6) can be interpreted as a specific density of surface sources; the total output from
these sources is proportional to I_‘ cosnédl and equals zero because the problem for uy is soluble., We see

from (6) that u; should be defined in the form
- R Xe) )

where ¢; is defined by the following boundary-value problem:

¢ d*p 09 _ —
agzi +—a;‘—=0, € 20€S;US., > =0, z=x1,
. 0p E+1) 99, () (7a)
9E+1) =€) % P

[m=a[w%ﬂ:m—mm@@Jmn

The problem {(4), (5) is not soluble for arbitrary right sides of the equations and boundary conditions for
k = 2; the condition for solubility gives a two~dimensional heat-conduction equation for the unknown function
uy(x, ). The Ostrogradskii—Gauss formula is applied to the left side of (4) for regions I and II, respectively:

XijSAuszdz = Y WMy gy,
. J on
S, T

1

M(‘Auzdgdzz—}vz _a_”idl.rszg U gy
. J on ) on

s., T, T,

We add these two equations together and use (4) with (7) to obtain

g

Zu o
Ox2

— 20 Augt, ®)

A S E AupdEdz -+ iy W Aupdidz — j' {x ‘2“‘ ]cosn&dl—thAuoi — B(hy Ay T
. 13 x
S

1 2z 1

where B(A, Ay, I'y) = \S\ @1, z)cosniédl is a function of A; and A, and also a functional of I'y (B becomes zero
T,
only for A; = A;). On the other hand, we can put
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S j Auedz + 4, ” Aupddz = — 23, ( 5 gz‘;‘g FEdz —

l

.y 5 j‘ xyuoagdz—m,” P s, ” A, itodEdz.

We use (7), Green's formula, and condition (5) to obtain

A ” Bupdidz + 1, ” Buadide = 9B -0 — (1S, - 1,5 )8t ®)
S, S,

We equate the right sides of (8) and (9) to obtain the solubility condition as

Puy auo

(7»1s,+xzsz>( + a”") B(hy Ay T) 25 02,4ty = 0. (10)

This can be interpreted as a two-dimensional heat-conduction equation for a homogeneous anisotropic plate,

The ¢y of (7a) takes the following form for the particular case of alternating rods of rectangular cross
section:

o — {~ﬁ(m—~ 1) (L+Bm)™ (6 4 (157 — D1, 0<E<+t,
(m—1)(1 + Pm)™ [E— 1,5y1], v<i<t,

where vt is the width of a rod and B8 = (1—-y)/y, and m = Ay/Ay; we calculate B from the known ¢; and substitute
into (10) to obtain

(L-pPm Ouy , FPup  (1+PA

ty = 0. 11
(14+Bmp2 ox2 oy (1+Pm)

The ratio of the coefficients of the second derivatives corresponds fo the ratio of the effective thermal
conductivities Ax = (1 +B)AAy(Ay + BAy) ™ and Ay = (A, + BAy)~! as calculated from the theory of chains for serial
and parallel connection of conductors, respectively. In general, it is necessary to solve (7a) for the effective
thermal conductivities and then to calculate B, which is dependent on Ay and A,, along with the geometry of the
region,

In order to determine the boundary conditions for (10) and to construct a widely suitable expansion one
has to add functions of the boundary-layer type to the u, as these are localized near the ends x =1, y = %6:

2 uhsk—‘—zvm Eo 9, 2)e* + vv% (e 7, 2) ek + 2 wy, € x, Ny 2) € +2 Wy (%, & Mo 2)EF, (12)
k==0
where & 5 = (x + 1)/e and 1y, = (v + 6)/¢ are functions of boundary-layer type that satisfy the conditions
v;, 00;/08~>0 as E-—>o00, w, Ow;/0n;—0 as m;—oco. (13)

We substitute (12) into the equations and boundary conditions and use the conditions for the problem to be
solvable for byand w, to obtain the following boundary conditions for uy(x, y):

1
:-l Yf(y, Z)dz, x=—1 -qt—l°—=0, x=1 au":O, y==+4 (14)
2 Ox dy

—1

The equations for the higher approximations for the mean functions uy(x, y) will differ from (10) and (14) only
in the right sides, which will contain quantities calculated in the previous approximations.

Boundary-layer construction for the inhomogeneous case is substantially more comphcated than that for
the homogeneous case; the most severe difficulties arise in solving the problem for the ends x = +q parallel to
the generators of the cylinders. We illustrate the behavior of the solution near these boundaries by means of
an example that allows of exact solution for rods of rectangular cross section in contact (Fig. 2).

We introduce the following notation: & (i = 0, 1, 2...), which are the coordinates of the boundaries be-
tween the adjacent rectangles, while vj is the value of the boundary-layer function v (the subscript related to
the number of the approximation is omitted), for the range £j-; = £ =< &;; the equations and boundary conditions
take the form
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F e =0, 1,0, i—> o0, —a—z—=0, z2=441,

U = Ui Aag' =2 aé“ E=§, v= (z) £=0 (15)

The function f{z) appearing in the boundary condition for the end differs from the right side of the first condi-
tion in (2) by a constant appearing on the right in (14); specification of the boundary condition in this form en-~
sures that the boundary-layer solution dies away at infinity.

The solution to (15) derived by Fourier's method is put as

oo

U; =

[D“’sh an —§) + DNk an (§ —E_y) ]cos an(z -+ 1)
" 2 " 2 2

n=1

The matching conditions on the lines £ =4§; (i=1, 2,...,) are met to generate an infinite system of the
form

MDY+ ASDETY _,cDi = 0,

CDTY 4 SDEH — Dl =, (16)
)VZDLH-?) . MSD(H_s) _ MCDEzH_‘): 0,
CDYTH L SpYtY) D=0, i=1, 2, ...; n=1, 2,

S =sh0.25 anf, C =ch0.25mnt.

For each n we obtain a system of equations with a three-diagonal matrix, namely, a second-order difference
equation with periodic coefficients, This equation is solved by a2 method analogous to the characteristic~
parameter method used for differential equations [9]. We see a solution that satisfies the occurrence relation

DY) =D, 1-4, 5,5, ... mn
We substitute (17) into (16) and find that a solution to (17) exists if the following condition is met:
D + A,SD" — aCD =0, €D + DL — D=0, 18)

AD® 4 3,SD® —ua,CDY =0, CD - uSDY — uD{M = 0.
A nontrivial solution to the homogeneous system of (18) exists if
A = p? — p (AAC?) 71 (24,3582 + AIS2 - C2 + A, DpS* + ASC2S% - Ahs) + 1 = 0. 19)

If the solution is to be bounded as i —+ %, there must be a value of 4 less than 1 in magnitude; it is clear that
such a value exists, for the product of the roots of (19) is 1, while the discriminant

= (203 S* + AIS2C2 - AhaS* - MqAoCt 25C282 - Mhg)? — 42,0,CH

isa p051t1vn—def1n1te c&uadra’uc form in A and A,. We select root py of (19) such that gy, |14} < 1 and express
the consfants D ) D %) in terms of D(°), while the constants D(°) are found from the boundary conditions
for ¢ = 0, after wh1ch (17) gives a solution for the entire region.

NOTATION
X, V,Z are the dimensional coordinates;
X, V, Z, £, 1 are the dimensional coordinates;
u is the dimensionless temperature;
€ is the small parameter;
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Aiy Ay are the thermal conductivities;

A, B, 6, m,

B, t, 51, Sy are the dimensionless constants;

V, W are the boundary-layer functions;

Axs Ay are the effective thermal conductivities.
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IDENTIFICATION OF TIME-VARIABLE COEFFICIENTS
OF HEAT TRANSFER BY SOLVING A NONLINEAR
INVERSE PROBLEM OF HEAT CONDUCTION

Yu. M. Matsevityi, V. A. Malyarenko, UDC 536,532
and A, V. Multanovskii

The solution of the inverse nonstationary problem of nonlinear heat conduction by using the meth-
od of optimal dynamic filtering is considered.

The solution of the inverse heat-conduction problem has lately assumed especially great importance,
since one has to determine the boundary conditior.s of the heat fransfer from the limited information on the
temperature field of the body,

In [1, 2] the feasibility of electrical modelling of converse problems was considered; several approaches
have been suggested for solving such problems on various analog models. With this aim in mind, the applica-
tion of optimal dynamic filtering [3] is of some interest; it provides the possibility, as seen from previous
investigations [4, 5], of solving a wide class of inverse heat-conduction problems, including the reconstruc-
tion of the temperature field, the determination of the boundary conditions, the restoring of the initial distribu-
tions, etc.

In this article a technique that enables one to obtain in a special way a prediction of the estimate of the
state vector is proposed. The employed discrete-filtering algorithm of Kalman presupposes that an extended
state vector can be estimated due to the specific shape of the solution of the inverse problem, in which side
by side with the reconstruction of the temperature field, the identification of the boundary conditions is carried
out. In view of the latter, the components of the temperature field vector and the identifying vector of param-
eters @ are included in the state vector.

To construct a solution algorithm of the inverse problem a mathematical model was adopted by us in
which the finite-differences equation of heat conduction in its matrix form as well as the identifying parameter

« as a function of time are included:

Institute of Mechanical Engineering, Academy of Sciences of the Ukrainian SSR, Khar'kov. Translated
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