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is the orthogonal  coordinate sys t em;  
is the genera l ized  mean  coefficient  for  the i r rad ia t ion  of the i - th  zone by the j - th  zone; 
is the zone a rea ;  
a re  the d i rec t ion angles of hi ,  the no rma l  to Fi;  
is the length of radius  vec to r  Pi for  zone i; 
is the contour of the i - th  zone; 
is the d is tance  between points in the i - th  and j - th  zones;  
a re  the pro jec t ions  of rij  on the x, y,  and z axes.  
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Multiscale expansion is used in a sympto t i c  integrat ion of a s t eady-s t a t e  heat -conduct ion p rob lem 
for  a thin plate of per iodic  s t ruc tu re ;  r e su l t s  a re  p resen ted  for  the boundary l aye r  near  the end. 

The s ingu la r -pe r tu rba t ion  method has proved  an eff icient  means  of derv ing  approximate  equations for  
thin bodies;  for  ins tance ,  the method has been applied to the complete  equations in the theory of e las t ic i ty  to 
der ive  equations for  the bending of a plate [1, 2] o r  rod [3]. A s i m i l a r  method has  been used [4] in the theory 
of heat  c~nduction for  a t h e r m a l l y  insulated l a t e r a l  su r face .  A method has  been  given [5, 6] for  extending the 
technique to conditions of the th i rd  kind for  sma l l  va lues  of the Blot  number .  An approximat ion  has  also been 
cons t ruc ted  [7] for  the a sympto te  to a second b o u n d a r y - v a l u e  p rob lem for  a s e c o n d - o r d e r  ell iptic equation 
of gene ra l  f o r m  for  a region in which one dimension is  much l e s s  than the o thers .  

These  studies have envisaged e i ther  homogeneous bodies or  e lse  bodies in which the p a r a m e t e r s  va ry  
slowly in space;  on the o ther  hand, appl icat ions often involve inhomogeneous media  in which the p a r a m e t e r s  
v a r y  cons iderably  over  d is tances  smal l  by compar i son  with the length of the body. The s imp le s t  case is one 
where  the rapid  change is r egu l a r ,  e .g . ,  per iodic .  Bodies of r egu la r  s t ruc tu re  a re  of impor tance  in t h e m -  
se lves  in the descr ip t ion  of r e in fo rced  s t r u c t u r e s  [8] as well  as in the s imulat ion of i r r e g u l a r  inhomogeneous 
bodies ,  including random medi~. The asympto t ic  methods of [1-3, 5-7] a r e  inadequate for  media  with rapidly 
va ry ing  p a r a m e t e r s .  However ,  another  f o r m  of the s ingu la r -pe r tu rba t ion  method,  which is widely used in 
nonlinear  mechanics  [4], is then effect ive:  two-sca le  expansion.  He re  we consider  a s t eady-s t a t e  p rob lem in 
the theory of heat  conduction for  a thin plate re in forced  by a rod la t t ice .  I t  is a s sumed  that the t he rma l  con-  
ductivity of the r e in fo rcemen t  d i f fers  f r o m  that  of the m a t r i x  m a t e r i a l  and also that the t he rma l  contact  is 
ideal.  

The la t t e r  assumpt ion  is un impor tan t  for  the method given he re  and is made only in o rde r  to s impl i fy  
the expres s ions .  

Phys ica l  cons idera t ions  show that  such a re in forced  plate can be rep laced  approx imate ly  by a homo-  
geneous plate whose t he rm a l  conductivity along the rod di rec t ion is d i f ferent  f r o m  that along the t r a n s v e r s e  
d i rec t ion  if we a re  not in te res ted  in the detai ls  of the t e m p e r a t u r e  var ia t ion  over  d is tances  smal l  by c o m p a r i -  
son with the s ize  of the plate  in plan. He re  we provide  a just i f icat ion for  this subst i tut ion,  i .e . ,  we use the 
th ree -d imens iona l  conduction equation to der ive  a two-dimens iona l  one and cons t ruc t  an a lgor i thm for  ca lcula t -  
ing the co r rec t ions  to the two-dimens iona l  t e m p e r a t u r e  dis tr ibut ion.  This  method gives ,  in p a r t i c u l a r ,  

T r a n s l a t e d  f r o m  Inzhene rno-F iz i ehesk i i  Zhurnal ,  Vol. 35, No. 3, pp. 497-504, Sep tember ,  1978. O r i g i -  
nal a r t ic le  submit ted  July 25, 1977. 
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Fig. 1. Cross  section of a plate. 

l 

asymptotical ly exact  effective thermal  conductivities without r e s o r t  to any hypotheses on the tempera ture  d is -  
tribution over  the thickness of the plate or  over the c ross  section of a rod. 

The formulation is as follows. The parallelepiped - a  < x < a, - b  < y < b, - h  < z < h (h/a<< 1, f~/b-<< 1) 
consists  of identical blocks adjoining one another (Fig. 1), each of which contains a cylindrical  inclusion; the 
genera tors  of the cylinders are  paral le l  to the y axis,  while the c ross  section is a singly coupled region S~ 
bounded by a p iecewise-smooth  curve F 1. The charac te r i s t ic  size of a cylinder in c ross  section is d, while 
the pitch of the rod lattice is t, which is of the same order  as the thickness h of the plate. 

We assume that in the plane ~ = - a  we have a constant tempera ture  distribution T ( - a ,  y ,  z) = F ~ ,  ~), 
while the heat t r ans fe r  occurs  in accordance with Newton's law on the other faces (the environmental  t em-  
pera ture  T O is taken as constant). There  is ideal contact at the boundary of each inclusion, so the t e m p e r a -  
ture and heat flux are  continuous. We then seek to determine the asymptot ic  solution to Laplace ' s  equation 
O2T/~x 2 + ~2T/a.v2 + 02T/8s 2 = 0 when e = ~/a---* 0, where it is assumed that t'/h- and d/h-tend to constant values t 
and d on pass ing to the limit. 

The two-scale  expansion method leads us to replace the dimensional variable ~ by two dimensionless 
ones:  the l a rge - sca le  variable x = x/a and the smal l - sca le  variable ~ = ~h-. The problem is then formulated 
as follows in t e rms  of the dimensionless  var iables  x, ~, y = ~/a-, z = ~/h-, and u = (T-To)/To: the equation for  
s teady-s ta te  heat conduction, 

a~u a2u " a2u ( ~  -g77;-..~ "~ a~--- T + ~ + 2~ .., + e "~ = O, 
a~ax k Ox 2 + u y - /  (1) 

(~, z) E S~ U $2, Ix] < I, [y[ < a; 

the boundary conditions at the outer  surface of the plate,  

au au 
u ---- [ (y, z), x = - -  l, - ~ -  + e-~x ~- - -  Ae2u, x ----1, 

au au 
Oy -- 2i= gsAeu' y = 3= 6, ~ = =V Ae~u, z = 3= 1 ; (2) 

and the conditions at the boundary of an inclusion, 

[ au l 
[ul = o, ~ 7 n  = ~ ( ~  - -  4 )  OUox cos n.~, (~, z) E r~. (3) 

In (1)-(3) we have used the symbols 6 = b/aand A = o~2/M~, where ~ is the hea t - t r ans fe r  coefficient for the side 
surface, ~2 is the thermal  conductivity of the plate mater ia l ,  and kl is the thermal  conductivity of the inclu- 
sions. The quantity gs takes the value 
the Blot number is of the second order  
to approximately one-dimensional  heat 
a plate. 

1 if the point lies in region S 1. It has been assumed in wri t ing (2) that 
of smal lness  in e. It has been shown [5, 6] that this case corresponds  
conduction for a rod or  approximately two-dimensional  conduction for 

We assume that as e --* 0 we have a l imiting expansion applicable at some distance f rom the side faces 
x = ~ l ,  y = ~ 6 :  

U = ~ ~kU h. 
k=O 

We substitute this ser ies  into (1) and use (2) and (3) to obtain the following chain of equations: 

a~ 2 + az 2 O x a ~  ~ Ox ~ ~ - ~ -  ay z 

(~, z) 6 $t U s~, dub - ~ Auk_s, z = • I, (4) 
az 
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[u~+] = O, [E OUhon 11 = ( ) q -  ~) 0~?~ cos n~, (~, z) C F~. (4) 

The region defined by the va r i ab l e s  ~ and z becomes  an infinite band whose s t ruc tu re  is per iodic  along the 
d i rec t ion on pass ing  to the l imi t  e -+ 0 with ~ fixed; in the f i r s t  approximat ion  (k = 0), the the rma l - insu la t ion  
condition appl ies  at  the bounding planes .  The equations and the boundary conditions then have t rans la t iona l  
s y m m e t r y  along the ~ d i rec t ion ,  with r epea t  d is tance t. Consequently,  the solution should show the same  
per iodic i ty .  In the subsequent  approx imat ions ,  the r ight  s ides of the equations and the boundary condition con-  
tain per iod ic  functions of ~ and functions of the slow var iab le  x. The re la t ionship  between the va r i ab l e s  x and 

is not expl ici t ly  incorpora ted  into the equations involving different ia t ion with r e spec t  to ~ (i .e. ,  the x depen-  
dence is p a r a m e t r i c ) ,  so the functions of x appear ing  on the r ight  side do not cause a deviation f rom the t r a n s -  
la t ional  s y m m e t r y  in ~. This  means  that (4) can be rep laced  in all  approximat ions  by means  of the per iodic i ty  
condition 

u~ (~ + t) = u. @,  Ou~. (~ + t) ou~ (~) (5) 
O~ O~ 

We now solve (4) and (5); these imply for  k = 0 that  u 0 is independent of ~ and z: u 0 = u0(x , y), All the 
conditions that de te rmine  ui a re  homogeneous ,  apa r t  f r o m  the condition for  continuity of the hea t  flux at  the 
boundary of an inclusion: 

[ ~ ou, ] = (~ ,_  h)0Uo cos n~, (~, z) C r,. (6) 
On J ox 

The r ight  side of (6) can be in t e rp re t ed  as a specif ic  densi ty of sur face  sources ;  the total  output f r o m  
these sources  is p ropor t iona l  to ~, c o s n ~ d / a n d  equals ze ro  because  the p rob lem for  ut is soluble. We see  

f r o m  (6) that  ul should be defined in the f o r m  

Ouo 
u, = O---x %(~'' z ) +  *i(x, y), (7) 

where  ~l is defined by the following boundary-va lue  p rob lem:  

02(Pi § 02% = 0 ,  (~, z) ESiUS~, 0 %  = 0 ,  z= -4 -1 ,  
0~2 Oz = Oz 

,~ (~ + t) = % g), 0% (~ + t) _ o~, (~) , 
og o~ 

0~, ] = ( z , -  ~) cos 4 ,  (~, z) E r,. [~,1=0, ~-~-n ] 

(7a) 

The p rob lem (4), (5) is not soluble for  a r b i t r a r y  r ight  s ides of the equations and boundary conditions for  
k = 2; the condition for  solubil i ty gives a two-dimens ional  heat-conduct ion equation for  the unknown function 
u0(x , y). The O s t r o g r a d s k i i - G a u s s  formula  is applied to the left  side of (4) for  regions I and II ,  r e spec t ive ly .  

$1 Yt 

S= Y~ Y= 

dl. 

We add these two equations together  and use  (4) with (7) to obtain 

S 1 Y~ 

where  B(k,  ~2, ]?1) = _t ~I(~, z)cosn~d/ is a funct ion of )t 1 and X 2 and also a funct iona l  of r I 03 becomes zero  
r l  

only f o r  X 1 = ~2). On the o ther  hand, we can put 
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S~ S= S~ 

S~ S= S= 

We use (7), Green ' s  formula ,  and condition (5) to obtain 

~,iSSAuzc~dz+L~ ~ A u z ~ d z = 2 B  o2u~ 2 --(LzSz-kZiSt)Axguo. (9) 

S~ 82 

We equate the right sides of (8) and (9) to obtain the solubility condition as 

(Z~S~ + Z2S2) [ O~u~ O2u~ \ ox~ + ~ )  - B (h, ~, r,) a%_o~ --  2Z~Atuo = 0 (1 O) 

This can be in terpreted as a two-dimensional  heat-conduction equation for  a homogeneous anisotropic plate. 

The ~1 of (Ta) takes the following form for the par t icu lar  case of al ternat ing rods of rec tangular  c ross  
section: 

~, = l --  ~ ( rn-  1)(]+~rn)-~[~ + (1,5~-- ~)t], O < ~ < v t ,  
{ (m--1)(l+~Jm)-~[~--l,5yt], y t < ~ < t ,  

where 7t is the width of a rod and/3 = (1-T)/y, and m = Xl/~; we calculate B f rom the known ~0i and substitute 
into (10) to obtain 

(1 _L ~)z rn OZuo + 02uo (1 -i- 8) A a0 = 0. (11) 
(1 + ~m) ~ Ox 2 Oy 2 (1 @ [~m) 

The rat io of the coefficients of the second derivat ives  corresponds  to the rat io of the effective thermal  
conductivities ~t x = (1 +/3)hlk2(X 2 +/3~tl) -1 and ;ty = (~t 2 +/32~1) -1 as calculated f rom the theory of chains for ser ia l  
and paral le l  connection of conductors ,  respect ively.  In general ,  it is necessa ry  to solve (7a) for the effective 
thermal  conductivities and then to calculate B, which is dependent on hi and ;~2, along with the geometry  of the 
region. 

In o rder  to determine the boundary conditions for  (10) and to construct  a widely suitable expansion one 
has to add functions of the boundary- layer  type to the u k, as these are localized near  the ends x = +1, y = +6: 

Where ~1,2 = (x + 1)/e and rll,2 = (Y + 6)/e are functions of boundary- layer  type that satisfy the conditions 

vi, Ov~lO~i--~O as ~i--~co, rye, dv)il0~--~0 as lb--*oo. (13) 

We substitute (12) into the equations and boundary conditions and use the conditions for the problem to be 
solvable for boand w 0 to obtain the following boundary conditions for Uo(X, y) : 

! 

1 I = O , y  ~ &  uo=--~ , f(y, z) dz, x = - - l ;  OUOox =0'  x = l ;  OUOoy (14) 

--I 

The equations for the higher approximations for  the mean functions Uk(X, y) will differ f rom (10) and (14) only 
in the r ight  s ides ,  which will contain quantities calculated in the previous approximations.  

Boundary- layer  construct ion for  the inhomogeneous case is substantially more  complicated than that for 
the homogeneous case;  the mos t  severe  difficulties ar ise  in solving the problem for  the ends x = +~ paral lel  to 
the genera tors  of the cylinders.  We il lustrate the behavior of the solution near  these boundaries by means of 
an example that allows of exact  solution for rods of rectangular  c ross  section in contact (Fig. 2). 

We introduce the following notation: ~i (i = 0, 1, 2 . . . ) ,  which are  the coordinates of the boundaries be-  
tween the adjacent rec tangles ,  while v i is the value of the boundary- layer  function v (the subscr ip t  related to 
the number of the approximation is omitted), for  the range ~i-1 --< ~ -< ~i; the equations and boundary conditions 

take the form 
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t.Z 2,/ Xo 

Fig. 2. A reg ion  in t e r m s  of bound-  
a r y - l a y e r  v a r i a b l e s .  

Ozv----L-5 O~vi = 0 ,  r i c O ,  i--~oo, Ovi = 0 ,  Z= -4 -1 ,  
O~ ~ Oz z Oz 

o~=v~+,, )~,--~=L~ , ~=[~, v=" f (z ) ,  ~ = 0 .  (15) 

The funct ion ~z)  a p p e a r i n g  in the boundary  condi t ion fo r  the end d i f fe rs  f r o m  the r igh t  side of the f i r s t  cond i -  
t ion in (2) by a cons tan t  appea r ing  on the r i gh t  in (14) ; spec i f i ca t ion  of the boundary  condit ion in this f o r m  e n -  
s u r e s  tha t  the b o u n d a r y - l a y e r  solut ion dies  away at infinity. 

The solut ion to (15) de r ived  by F o u r i e r ' s  me thod  is put as  

f o r m  

V~= E [D~.;)sh ztn(}--~)2 -5 D~+l)ch ~n(~--~-t)2 ] c~ +2 1) 

The ma tch ing  condi t ions  on the l ines  ~ = ~i (i = 1, 2 . . . .  ) a r e  m e t  to genera te  an infinite s y s t e m  of the 

X,D~ ~ § ~,SD~ ~+i) -- MCD(~ '+2~ = O, 

CD(~ ~+I) + SD~n ~+2) -- D~n i+s) = 0, (16) 

~D~ '+2~ § ~SD~ ~+3~ -- Z,CD~*+')= 0, 

CD(ni+3) -5 SD(n ~+4) - -D~+5)=0,  i =  1, 2 . . . .  ; n = 1, 2 . . . . .  

S = sh 0.25 ant, C = ch0.25 ant. 

F o r  each n we obta in  a s y s t e m  of equat ions  with a t h r e e - d t a g o n a l  m a t r i x ,  name ly ,  a s e c o n d - o r d e r  d i f fe rence  
equat ion  with pe r iod i c  coef f ic ien ts .  This  equat ion  is so lved  by a method  ana logous  to the c h a r a c t e r i s t i c -  
p a r a m e t e r  me thod  used  fo r  d i f fe ren t ia l  equat ions  [9]. We see a solut ion that  s a t i s f i e s  the o c c u r r e n c e  r e l a t ion  

= Ix~n , l = 4, 5, 6 . . . .  (17) 

We subst i tu te  (17) into (16) and find that  a solut ion to (17) ex is t s  if the fol lowing condi t ion is me t :  

D~ ~ -5 ~,~SD~ l) - -  ~CD~ 2) = O, CD~ 1) -5 SD~ 2) D (3) - -  . = u ,  ( 1 8 )  

k2D(. 2) + tzSD(. 3) --IX~.,CD(. ~ = O, CD~ 3) -5 IXSD(. ~ - IXD(.')-- - 0. 

A non t r iv ia l  solut ion to the hom oge ne ous  s y s t e m  of (18) ex i s t s  if 

a = IXz _ ix ()~,LzCZ) -, (2k, kzS ~ -5 1.~S z -5 C 2 q_ )~,ZcS' -5 E~CzS z + Xth) -5 1 = 0. (19) 

If the solution is to be bounded as i -~ ~o, there must be a value of/~ less  than 1 in magnitude; it is clear  that 
such a value exists ,  for the product of the roots of (19) is 1, while the discriminant 

m = (2~,k2S z -5 ~ $ 2 0  z -5 ~t}.2S ~ -5 )~,LzC' -5 X~CzS 2 -5 X,~) 2 -- 4X,}~zC 4 

is  a pos i t ive -de f in i t e  quad ra t i c  f o r m  in k I and }k 2. We se l ec t  roo t  ~1 of  (19) such that  ~1, I/~l[ < 1 and e x p r e s s  
the cons tan t s  D(~,  D(n 3), D~ 4) in t e r m s  of D(n ~ while  the cons tan ts  D(n~ a r e f o t m d  f r o m  the boundary  condi t ions  
fo r  ~ = 0, a f t e r  which  (17) gives a solut ion for  the en t i r e  region.  

x,  y ,  z 
x,  y ,  z ,  ~, 7/ 
U 

N O T A T I O N  

a r e  the d imens iona l  coo rd ina t e s ;  
a r e  the d imens iona l  coo rd ina t e s ;  
is the d i m e n s i o n l e s s  t e m p e r a t u r e ;  
is the sma l l  p a r a m e t e r ;  
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A, B, 5, m, 
f~, t, S~, S~ 
~r w 
I x ,  ~.y 

a r e  the t he rma l  conductivi t ies;  

a r e  the d imens ion less  constants ;  
a re  the bounda ry - l aye r  functions; 
a r e  the effect ive t h e r m a l  conductivi t ies .  

1, 

2. 
3. 

4B 

5. 
6. 
7. 
8. 
9. 
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I D E N T I F I C A T I O N  O F  T I M E - V A R I A B L E  C O E F F I C I E N T S  

O F  H E A T  T R A N S F E R  BY S O L V I N G  A N O N L I N E A R  

I N V E R S E  P R O B L E M  O F  H E A T  C O N D U C T I O N  

Y u .  M. M a t s e v i t y i ,  Vo A .  M a l y a r e n k o ,  UDC 536.532 
a n d  A .  V.  M u l t a n o v s k i i  

The solution of the inverse  nonsta t ionary  p rob lem of nonl inear  heat  conduction by using the m e t h -  
od of opt imal  dynamic  f i l t e r ing  is considered.  

The solution of the inve r se  heat -conduct ion p rob l em has  la te ly  a s sumed  espec ia l ly  g rea t  impor t ance ,  
s ince one has to de te rmine  the boundary condition~ of the heat  t r a n s f e r  f r o m  the l imi ted  informat ion  on the 
t e m p e r a t u r e  field of the body. 

In [1, 2] the feas ib i l i ty  of e l ec t r i ca l  model l ing of converse  p r o b l e m s  was considered;  s eve ra l  approaches  
have been suggested for  solving such p rob l ems  on var ious  analog models .  With this a im in mind,  the app l ica -  
tion of opt imal  dynamic  f i l te r ing  [3] is of some in te res t ;  it p rovides  the poss ib i l i ty ,  as seen f r o m  previous  
invest igat ions [4, 5], of solving a wide c lass  of inverse  heat -conduct ion p r o b l e m s ,  including the r e c o n s t r u c -  
tion of the t e m p e r a t u r e  f ield,  the de te rmina t ion  of the boundary condit ions,  the r e s t o r i n g  of the initial d i s t r ibu-  
t ions,  etc.  

In this a r t i c l e  a technique that enables  one to obtain in a specia l  way a predic t ion of the e s t ima te  of the 
s tate  vec tor  is proposed.  The employed d i s c r e t e - f i l t e r i n g  a lgor i thm of Kalman p re supposes  that an extended 
s tate  vec to r  can be e s t ima ted  due to the speci f ic  shape of the solution of the inverse  p rob lem,  in which side 
by side with the recons t ruc t ion  of the t e m p e r a t u r e  field,  the identification of the boundary conditions is c a r r i ed  
out. In view of the l a t t e r ,  the components  of the t e m p e r a t u r e  field vec to r  and the identifying vec to r  of p a r a m -  
e t e r s  a a re  included in the s tate  vec tor .  

To cons t ruc t  a solution a lgor i thm of the inverse  p rob l em a ma themat i ca l  model  was adopted by us in 
which the f in i t e -d i f fe rences  equation of heat  conduction in its m a t r i x  fo rm as  well  as the identifying p a r a m e t e r  

as a function of t ime a re  included: 
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